Files
crypto_trader/docs/developer/creating_strategies.md

234 lines
7.1 KiB
Markdown
Raw Normal View History

# Creating Custom Strategies
This guide explains how to create custom trading strategies for Crypto Trader.
## Strategy Framework
All strategies inherit from `BaseStrategy` and implement a standardized interface. This allows the trading engine to execute any strategy uniformly.
## Basic Strategy Structure
```python
from src.strategies.base import BaseStrategy, StrategyRegistry
from src.data.indicators import get_indicators
import pandas as pd
from typing import Dict, Any
class MyCustomStrategy(BaseStrategy):
"""My custom trading strategy."""
def __init__(self, strategy_id: int, name: str, symbol: str, timeframe: str, parameters: Dict[str, Any]):
super().__init__(strategy_id, name, symbol, timeframe, parameters)
# Initialize strategy-specific parameters
self.my_param = parameters.get("my_param", 10)
async def on_data(self, new_data: pd.DataFrame):
"""Called when new data is available."""
# Update internal data
self.current_data = pd.concat([self.current_data, new_data])
# Generate signal if enough data
if len(self.current_data) >= self.my_param:
signal = await self.generate_signal()
if signal["signal"] != "hold":
# Signal generated - will be handled by trading engine
pass
async def generate_signal(self) -> Dict[str, Any]:
"""Generate trading signal."""
# Calculate indicators
indicators = get_indicators()
rsi = indicators.rsi(self.current_data['close'], period=14)
# Generate signal based on strategy logic
current_rsi = rsi.iloc[-1]
current_price = self.current_data['close'].iloc[-1]
if current_rsi < 30:
return {"signal": "buy", "price": current_price}
elif current_rsi > 70:
return {"signal": "sell", "price": current_price}
else:
return {"signal": "hold", "price": current_price}
async def calculate_position_size(self, capital: float, risk_percentage: float) -> float:
"""Calculate position size."""
return capital * risk_percentage
# Register strategy
StrategyRegistry.register_strategy("my_custom", MyCustomStrategy)
```
## Required Methods
### `on_data(new_data: pd.DataFrame)`
Called when new OHLCV data is available for the strategy's timeframe.
**Responsibilities**:
- Update internal data storage
- Calculate indicators
- Generate signals when conditions are met
### `generate_signal() -> Dict[str, Any]`
Analyzes current data and generates a trading signal.
**Returns**:
```python
{
"signal": "buy" | "sell" | "hold",
"price": float, # Optional, current price
"confidence": float, # Optional, 0.0 to 1.0
}
```
### `calculate_position_size(capital: float, risk_percentage: float) -> float`
Calculates the appropriate position size based on capital and risk.
**Parameters**:
- `capital`: Available trading capital
- `risk_percentage`: Percentage of capital to risk (0.0 to 1.0)
**Returns**: Position size in base currency
## Using Technical Indicators
Access indicators through the indicators library:
```python
from src.data.indicators import get_indicators
indicators = get_indicators()
# Calculate indicators
sma = indicators.sma(data['close'], period=20)
ema = indicators.ema(data['close'], period=20)
rsi = indicators.rsi(data['close'], period=14)
macd_result = indicators.macd(data['close'], fast=12, slow=26, signal=9)
bbands = indicators.bollinger_bands(data['close'], period=20, std_dev=2)
```
## Multi-Timeframe Strategies
Strategies can use multiple timeframes:
```python
from src.strategies.timeframe_manager import get_timeframe_manager
timeframe_manager = get_timeframe_manager()
# Get data from different timeframes
primary_data = timeframe_manager.get_data(self.symbol, self.timeframe)
higher_tf_data = timeframe_manager.get_data(self.symbol, "1d") # Daily for trend
# Use higher timeframe for trend confirmation
if higher_tf_data is not None and len(higher_tf_data) > 0:
daily_trend = higher_tf_data['close'].iloc[-1] > higher_tf_data['close'].iloc[-20]
if daily_trend:
# Only trade in direction of higher timeframe trend
pass
```
## Strategy Parameters
Define configurable parameters:
```python
def __init__(self, strategy_id: int, name: str, symbol: str, timeframe: str, parameters: Dict[str, Any]):
super().__init__(strategy_id, name, symbol, timeframe, parameters)
# Required parameters with defaults
self.rsi_period = parameters.get("rsi_period", 14)
self.overbought = parameters.get("overbought", 70)
self.oversold = parameters.get("oversold", 30)
# Validate parameters
if not (0 < self.oversold < self.overbought < 100):
raise ValueError("Invalid RSI thresholds")
```
## Strategy Registration
Register your strategy so it can be used:
```python
from src.strategies.base import StrategyRegistry
StrategyRegistry.register_strategy("my_strategy", MyCustomStrategy)
```
## Strategy Lifecycle
1. **Initialization**: Strategy is created with parameters
2. **Start**: `start()` is called when strategy is activated
3. **Data Updates**: `on_data()` is called with new candles
4. **Signal Generation**: `generate_signal()` is called when conditions are met
5. **Order Execution**: Trading engine executes signals
6. **Stop**: `stop()` is called when strategy is deactivated
## Best Practices
1. **Parameter Validation**: Validate all parameters in `__init__`
2. **Error Handling**: Handle missing data and calculation errors
3. **Logging**: Use strategy logger for important events
4. **Testing**: Write unit tests for your strategy
5. **Documentation**: Document strategy logic and parameters
6. **Backtesting**: Always backtest before live trading
## Example: Complete Strategy
See `src/strategies/technical/rsi_strategy.py` for a complete example.
## Available Strategy Examples
The codebase includes several advanced strategy implementations that serve as examples:
### Multi-Indicator Confirmation
See `src/strategies/technical/confirmed_strategy.py` for an example of combining multiple indicators.
### Divergence Detection
See `src/strategies/technical/divergence_strategy.py` for an example of divergence detection using the indicators API.
### Ensemble Methods
See `src/strategies/ensemble/consensus_strategy.py` for an example of combining multiple strategies with weighted voting.
### Trend Filtering
All strategies can use the optional trend filter method from BaseStrategy:
```python
signal = strategy.apply_trend_filter(signal, ohlcv_data, adx_period=14, min_adx=25.0)
```
## Testing Your Strategy
```python
import pytest
from src.strategies.my_strategy import MyCustomStrategy
def test_strategy_signal_generation():
"""Test strategy signal generation."""
strategy = MyCustomStrategy(
strategy_id=1,
name="Test Strategy",
symbol="BTC/USD",
timeframe="1h",
parameters={"rsi_period": 14}
)
# Create test data
test_data = pd.DataFrame({
'close': [100, 101, 102, 103, 104]
})
# Test signal generation
signal = await strategy.generate_signal()
assert signal["signal"] in ["buy", "sell", "hold"]
```