Files
crypto_trader/docs/architecture/ml_improvements.md

184 lines
5.1 KiB
Markdown
Raw Normal View History

# Machine Learning Improvements
This document describes the ML enhancements added to the intelligent autopilot system.
## Overview
The ML improvements focus on making the strategy selection model more robust, interpretable, and adaptive to changing market conditions.
## Components
### 1. Online Learning Pipeline
**Location**: `src/autopilot/online_learning.py`
**Features**:
- Incremental model updates from live trading data
- Concept drift detection using performance windows
- Buffered training samples for efficient batch updates
- Automatic full retraining on drift detection
**Usage**:
```python
from src.autopilot.online_learning import get_online_learning_pipeline
pipeline = get_online_learning_pipeline(model)
# Add training sample after trade
await pipeline.add_training_sample(
market_conditions=conditions,
strategy_name="selected_strategy",
performance=trade_return
)
# Check for drift and retrain if needed
retrain_result = await pipeline.trigger_full_retrain_if_needed()
```
### 2. Confidence Calibration
**Location**: `src/autopilot/confidence_calibration.py`
**Features**:
- Platt scaling (logistic regression calibration)
- Isotonic regression calibration
- Probability distribution calibration
- Validation data integration
**Methods**:
- `Platt Scaling`: Fast, parametric calibration using logistic regression
- `Isotonic Regression`: Non-parametric, more flexible but requires more data
**Usage**:
```python
from src.autopilot.confidence_calibration import get_confidence_calibration_manager
calibrator = get_confidence_calibration_manager()
# Fit from validation data
calibrator.fit_from_validation_data(
predicted_probs=[...],
true_labels=[...]
)
# Calibrate predictions
strategy, calibrated_conf, calibrated_preds = calibrator.calibrate_prediction(
strategy_name="strategy",
confidence=0.85,
all_predictions={...}
)
```
### 3. Model Explainability
**Location**: `src/autopilot/explainability.py`
**Features**:
- SHAP (SHapley Additive exPlanations) value integration
- Feature importance analysis (global and local)
- Prediction explanations with top contributing features
- Support for tree-based and kernel-based models
**Usage**:
```python
from src.autopilot.explainability import get_model_explainer
explainer = get_model_explainer(model)
# Initialize with background data
explainer.initialize_explainer(background_data_df)
# Explain a prediction
explanation = explainer.explain_prediction(features)
# Returns: feature_importance, top_positive_features, top_negative_features, etc.
# Get global feature importance
global_importance = explainer.get_global_feature_importance()
```
### 4. Advanced Regime Detection
**Location**: `src/autopilot/regime_detection.py`
**Features**:
- Hidden Markov Models (HMM) for regime detection
- Gaussian Mixture Models (GMM) for regime detection
- Hybrid detection combining multiple methods
- Probabilistic regime predictions
**Methods**:
- `HMM`: Models regime transitions as Markov process
- `GMM`: Clusters market states using Gaussian mixtures
- `Hybrid`: Combines both methods for robust detection
**Usage**:
```python
from src.autopilot.regime_detection import AdvancedRegimeDetector
detector = AdvancedRegimeDetector(method="hmm")
detector.fit_from_dataframe(ohlcv_df)
regime = detector.detect_regime(returns=0.01, volatility=0.02)
```
### 5. Enhanced Feature Engineering
**Location**: `src/autopilot/feature_engineering.py`
**Enhancements**:
- Multi-timeframe feature aggregation
- Order book feature extraction
- Feature interactions (products, ratios)
- Regime-specific feature engineering
- Lag features for temporal patterns
## Integration
These components integrate with the existing `IntelligentAutopilot` and `StrategySelector` classes:
1. **Online Learning**: Integrated via `_record_trade_for_learning` method
2. **Confidence Calibration**: Applied in `select_best_strategy` method
3. **Explainability**: Available via API endpoints for UI visualization
4. **Regime Detection**: Used in `MarketAnalyzer` for enhanced regime classification
## Configuration
Configuration options in `config/config.yaml`:
```yaml
autopilot:
intelligent:
online_learning:
drift_window: 100
drift_threshold: 0.1
buffer_size: 50
update_frequency: 100
confidence_calibration:
method: "isotonic" # or "platt"
regime_detection:
method: "hmm" # or "gmm" or "hybrid"
n_regimes: 4
```
## Dependencies
Optional dependencies (with fallbacks):
- `hmmlearn`: For HMM regime detection
- `shap`: For model explainability
- `scipy`: For calibration methods (isotonic regression)
## Performance Considerations
- **Online Learning**: Batches updates for efficiency (configurable buffer size)
- **SHAP Values**: Can be slow for large models; consider caching or background computation
- **HMM/GMM**: Training is fast, prediction is very fast
- **Calibration**: Fitting is fast, prediction is O(1)
## Testing
Recommended testing approach:
1. Use synthetic data for online learning pipeline
2. Test calibration with known probability distributions
3. Validate SHAP values against known feature importance
4. Compare HMM/GMM regimes against rule-based classification