feat: Add core trading modules for risk management, backtesting, and execution algorithms, alongside a new ML transparency widget and related frontend dependencies.
Some checks are pending
Documentation / build-docs (push) Waiting to run
Tests / test (macos-latest, 3.11) (push) Waiting to run
Tests / test (macos-latest, 3.12) (push) Waiting to run
Tests / test (macos-latest, 3.13) (push) Waiting to run
Tests / test (macos-latest, 3.14) (push) Waiting to run
Tests / test (ubuntu-latest, 3.11) (push) Waiting to run
Tests / test (ubuntu-latest, 3.12) (push) Waiting to run
Tests / test (ubuntu-latest, 3.13) (push) Waiting to run
Tests / test (ubuntu-latest, 3.14) (push) Waiting to run

This commit is contained in:
2025-12-31 21:25:06 -05:00
parent 099432bf3f
commit 7bd6be64a4
743 changed files with 8617 additions and 5042 deletions

View File

@@ -0,0 +1,183 @@
# Machine Learning Improvements
This document describes the ML enhancements added to the intelligent autopilot system.
## Overview
The ML improvements focus on making the strategy selection model more robust, interpretable, and adaptive to changing market conditions.
## Components
### 1. Online Learning Pipeline
**Location**: `src/autopilot/online_learning.py`
**Features**:
- Incremental model updates from live trading data
- Concept drift detection using performance windows
- Buffered training samples for efficient batch updates
- Automatic full retraining on drift detection
**Usage**:
```python
from src.autopilot.online_learning import get_online_learning_pipeline
pipeline = get_online_learning_pipeline(model)
# Add training sample after trade
await pipeline.add_training_sample(
market_conditions=conditions,
strategy_name="selected_strategy",
performance=trade_return
)
# Check for drift and retrain if needed
retrain_result = await pipeline.trigger_full_retrain_if_needed()
```
### 2. Confidence Calibration
**Location**: `src/autopilot/confidence_calibration.py`
**Features**:
- Platt scaling (logistic regression calibration)
- Isotonic regression calibration
- Probability distribution calibration
- Validation data integration
**Methods**:
- `Platt Scaling`: Fast, parametric calibration using logistic regression
- `Isotonic Regression`: Non-parametric, more flexible but requires more data
**Usage**:
```python
from src.autopilot.confidence_calibration import get_confidence_calibration_manager
calibrator = get_confidence_calibration_manager()
# Fit from validation data
calibrator.fit_from_validation_data(
predicted_probs=[...],
true_labels=[...]
)
# Calibrate predictions
strategy, calibrated_conf, calibrated_preds = calibrator.calibrate_prediction(
strategy_name="strategy",
confidence=0.85,
all_predictions={...}
)
```
### 3. Model Explainability
**Location**: `src/autopilot/explainability.py`
**Features**:
- SHAP (SHapley Additive exPlanations) value integration
- Feature importance analysis (global and local)
- Prediction explanations with top contributing features
- Support for tree-based and kernel-based models
**Usage**:
```python
from src.autopilot.explainability import get_model_explainer
explainer = get_model_explainer(model)
# Initialize with background data
explainer.initialize_explainer(background_data_df)
# Explain a prediction
explanation = explainer.explain_prediction(features)
# Returns: feature_importance, top_positive_features, top_negative_features, etc.
# Get global feature importance
global_importance = explainer.get_global_feature_importance()
```
### 4. Advanced Regime Detection
**Location**: `src/autopilot/regime_detection.py`
**Features**:
- Hidden Markov Models (HMM) for regime detection
- Gaussian Mixture Models (GMM) for regime detection
- Hybrid detection combining multiple methods
- Probabilistic regime predictions
**Methods**:
- `HMM`: Models regime transitions as Markov process
- `GMM`: Clusters market states using Gaussian mixtures
- `Hybrid`: Combines both methods for robust detection
**Usage**:
```python
from src.autopilot.regime_detection import AdvancedRegimeDetector
detector = AdvancedRegimeDetector(method="hmm")
detector.fit_from_dataframe(ohlcv_df)
regime = detector.detect_regime(returns=0.01, volatility=0.02)
```
### 5. Enhanced Feature Engineering
**Location**: `src/autopilot/feature_engineering.py`
**Enhancements**:
- Multi-timeframe feature aggregation
- Order book feature extraction
- Feature interactions (products, ratios)
- Regime-specific feature engineering
- Lag features for temporal patterns
## Integration
These components integrate with the existing `IntelligentAutopilot` and `StrategySelector` classes:
1. **Online Learning**: Integrated via `_record_trade_for_learning` method
2. **Confidence Calibration**: Applied in `select_best_strategy` method
3. **Explainability**: Available via API endpoints for UI visualization
4. **Regime Detection**: Used in `MarketAnalyzer` for enhanced regime classification
## Configuration
Configuration options in `config/config.yaml`:
```yaml
autopilot:
intelligent:
online_learning:
drift_window: 100
drift_threshold: 0.1
buffer_size: 50
update_frequency: 100
confidence_calibration:
method: "isotonic" # or "platt"
regime_detection:
method: "hmm" # or "gmm" or "hybrid"
n_regimes: 4
```
## Dependencies
Optional dependencies (with fallbacks):
- `hmmlearn`: For HMM regime detection
- `shap`: For model explainability
- `scipy`: For calibration methods (isotonic regression)
## Performance Considerations
- **Online Learning**: Batches updates for efficiency (configurable buffer size)
- **SHAP Values**: Can be slow for large models; consider caching or background computation
- **HMM/GMM**: Training is fast, prediction is very fast
- **Calibration**: Fitting is fast, prediction is O(1)
## Testing
Recommended testing approach:
1. Use synthetic data for online learning pipeline
2. Test calibration with known probability distributions
3. Validate SHAP values against known feature importance
4. Compare HMM/GMM regimes against rule-based classification

View File

@@ -97,21 +97,30 @@ Crypto Trader follows a modular architecture with clear separation of concerns:
### 8. Risk Management
- **Components**: Risk manager, stop-loss, position sizing, limits
- **Integration**: Pre-trade checks, real-time monitoring
- **Features**: Drawdown limits, daily loss limits, position limits
- **Components**: Risk manager, stop-loss, position sizing, limits, VaR calculator, correlation analyzer
- **Integration**: Pre-trade checks, real-time monitoring, portfolio-level analysis
- **Features**:
- Drawdown limits, daily loss limits, position limits
- Value at Risk (VaR) calculation (Historical, Parametric, Monte Carlo, CVaR)
- Portfolio correlation analysis and diversification scoring
- Correlation-based position limits
- Advanced position sizing (volatility-adjusted, fractional Kelly, regime-aware, confidence-based)
### 9. Backtesting Engine
- **Features**: Historical data replay, realistic simulation
- **Components**: Engine, metrics, slippage model, fee model
- **Optimization**: Parameter optimization support
- **Features**: Historical data replay, realistic simulation, walk-forward analysis, Monte Carlo simulation
- **Components**: Engine, metrics, slippage model, fee model, walk-forward analyzer, Monte Carlo simulator
- **Optimization**:
- Parameter optimization (grid search, Bayesian, genetic algorithms)
- Walk-forward analysis with rolling window optimization
- Monte Carlo simulation for robustness testing
### 10. Portfolio Management
- **Tracking**: Real-time position tracking
- **Analytics**: Performance metrics, risk analysis
- **Rebalancing**: Automatic portfolio rebalancing (planned)
- **Tracking**: Real-time position tracking, performance analytics
- **Analytics**: Performance metrics, risk analysis, correlation analysis, VaR calculation
- **Rebalancing**: Automatic portfolio rebalancing with threshold and time-based triggers
- **Components**: Portfolio tracker, correlation analyzer, rebalancing engine
## Data Flow

View File

@@ -1,5 +1,120 @@
# Risk Management Architecture
## Overview
The risk management system provides comprehensive risk control mechanisms including position sizing, stop-loss management, drawdown limits, Value at Risk (VaR) calculation, and portfolio correlation analysis.
## Components
### Position Sizing
**Location**: `src/risk/position_sizing.py`
**Methods**:
- **Standard Position Sizing**: Percentage-based with fee accounting
- **Kelly Criterion**: Optimal position sizing with fractional Kelly (configurable)
- **Volatility-Adjusted**: ATR-based position sizing (lower vol = larger positions)
- **Regime-Aware**: Adjusts position size based on market regime
- **Confidence-Based**: ML model confidence-adjusted position sizing
**Usage**:
```python
from src.risk.position_sizing import PositionSizingManager
sizer = PositionSizingManager()
# Standard sizing
quantity = sizer.calculate_size(symbol, price, balance, risk_percent)
# Kelly Criterion (fractional)
kelly_pct = sizer.calculate_kelly_criterion(win_rate=0.6, avg_win=100, avg_loss=50, fractional=0.25)
# Volatility-adjusted
quantity = sizer.calculate_volatility_adjusted_size(symbol, price, balance, volatility_multiplier=0.8)
# Regime-aware
quantity = sizer.calculate_regime_aware_size(symbol, price, balance, market_regime="trending_up")
```
### Value at Risk (VaR)
**Location**: `src/risk/var_calculator.py`
**Methods**:
1. **Historical VaR**: Uses historical portfolio returns distribution
2. **Parametric VaR**: Assumes normal distribution (variance-covariance method)
3. **Monte Carlo VaR**: Simulates future returns using estimated parameters
4. **Conditional VaR (CVaR)**: Expected loss given that loss exceeds VaR
**Usage**:
```python
from src.risk.var_calculator import get_var_calculator
var_calc = get_var_calculator()
# Calculate all methods
results = await var_calc.calculate_all_var_methods(
portfolio_value=Decimal("10000.0"),
confidence_level=0.95,
holding_period_days=1
)
# Individual methods
historical_var = await var_calc.calculate_historical_var(...)
parametric_var = await var_calc.calculate_parametric_var(...)
monte_carlo_var = await var_calc.calculate_monte_carlo_var(...)
cvar = await var_calc.calculate_cvar(...)
```
### Portfolio Correlation Analysis
**Location**: `src/portfolio/correlation_analyzer.py`
**Features**:
- Correlation matrix calculation for portfolio symbols
- Diversification scoring (lower correlation = better)
- Concentration risk analysis
- Correlation-based position limits
**Usage**:
```python
from src.portfolio.correlation_analyzer import get_correlation_analyzer
analyzer = get_correlation_analyzer()
# Analyze current portfolio
analysis = await analyzer.analyze_portfolio_correlation(paper_trading=True)
# Check correlation limits before adding position
allowed, reason = await analyzer.check_correlation_limits(
symbol="ETH/USD",
new_position_value=Decimal("1000.0"),
max_correlation=0.8
)
```
### Stop-Loss Management
**Location**: `src/risk/stop_loss.py`
Provides dynamic stop-loss adjustment and management.
### Risk Limits
**Location**: `src/risk/limits.py`
Manages:
- Daily loss limits
- Maximum drawdown limits
- Portfolio allocation limits
### Risk Manager
**Location**: `src/risk/manager.py`
Orchestrates all risk management components and provides unified risk checking interface.
This document describes the risk management system.
## Risk Management Components