feat: Add core trading modules for risk management, backtesting, and execution algorithms, alongside a new ML transparency widget and related frontend dependencies.
Some checks are pending
Documentation / build-docs (push) Waiting to run
Tests / test (macos-latest, 3.11) (push) Waiting to run
Tests / test (macos-latest, 3.12) (push) Waiting to run
Tests / test (macos-latest, 3.13) (push) Waiting to run
Tests / test (macos-latest, 3.14) (push) Waiting to run
Tests / test (ubuntu-latest, 3.11) (push) Waiting to run
Tests / test (ubuntu-latest, 3.12) (push) Waiting to run
Tests / test (ubuntu-latest, 3.13) (push) Waiting to run
Tests / test (ubuntu-latest, 3.14) (push) Waiting to run
Some checks are pending
Documentation / build-docs (push) Waiting to run
Tests / test (macos-latest, 3.11) (push) Waiting to run
Tests / test (macos-latest, 3.12) (push) Waiting to run
Tests / test (macos-latest, 3.13) (push) Waiting to run
Tests / test (macos-latest, 3.14) (push) Waiting to run
Tests / test (ubuntu-latest, 3.11) (push) Waiting to run
Tests / test (ubuntu-latest, 3.12) (push) Waiting to run
Tests / test (ubuntu-latest, 3.13) (push) Waiting to run
Tests / test (ubuntu-latest, 3.14) (push) Waiting to run
This commit is contained in:
183
docs/architecture/ml_improvements.md
Normal file
183
docs/architecture/ml_improvements.md
Normal file
@@ -0,0 +1,183 @@
|
||||
# Machine Learning Improvements
|
||||
|
||||
This document describes the ML enhancements added to the intelligent autopilot system.
|
||||
|
||||
## Overview
|
||||
|
||||
The ML improvements focus on making the strategy selection model more robust, interpretable, and adaptive to changing market conditions.
|
||||
|
||||
## Components
|
||||
|
||||
### 1. Online Learning Pipeline
|
||||
|
||||
**Location**: `src/autopilot/online_learning.py`
|
||||
|
||||
**Features**:
|
||||
- Incremental model updates from live trading data
|
||||
- Concept drift detection using performance windows
|
||||
- Buffered training samples for efficient batch updates
|
||||
- Automatic full retraining on drift detection
|
||||
|
||||
**Usage**:
|
||||
```python
|
||||
from src.autopilot.online_learning import get_online_learning_pipeline
|
||||
|
||||
pipeline = get_online_learning_pipeline(model)
|
||||
|
||||
# Add training sample after trade
|
||||
await pipeline.add_training_sample(
|
||||
market_conditions=conditions,
|
||||
strategy_name="selected_strategy",
|
||||
performance=trade_return
|
||||
)
|
||||
|
||||
# Check for drift and retrain if needed
|
||||
retrain_result = await pipeline.trigger_full_retrain_if_needed()
|
||||
```
|
||||
|
||||
### 2. Confidence Calibration
|
||||
|
||||
**Location**: `src/autopilot/confidence_calibration.py`
|
||||
|
||||
**Features**:
|
||||
- Platt scaling (logistic regression calibration)
|
||||
- Isotonic regression calibration
|
||||
- Probability distribution calibration
|
||||
- Validation data integration
|
||||
|
||||
**Methods**:
|
||||
- `Platt Scaling`: Fast, parametric calibration using logistic regression
|
||||
- `Isotonic Regression`: Non-parametric, more flexible but requires more data
|
||||
|
||||
**Usage**:
|
||||
```python
|
||||
from src.autopilot.confidence_calibration import get_confidence_calibration_manager
|
||||
|
||||
calibrator = get_confidence_calibration_manager()
|
||||
|
||||
# Fit from validation data
|
||||
calibrator.fit_from_validation_data(
|
||||
predicted_probs=[...],
|
||||
true_labels=[...]
|
||||
)
|
||||
|
||||
# Calibrate predictions
|
||||
strategy, calibrated_conf, calibrated_preds = calibrator.calibrate_prediction(
|
||||
strategy_name="strategy",
|
||||
confidence=0.85,
|
||||
all_predictions={...}
|
||||
)
|
||||
```
|
||||
|
||||
### 3. Model Explainability
|
||||
|
||||
**Location**: `src/autopilot/explainability.py`
|
||||
|
||||
**Features**:
|
||||
- SHAP (SHapley Additive exPlanations) value integration
|
||||
- Feature importance analysis (global and local)
|
||||
- Prediction explanations with top contributing features
|
||||
- Support for tree-based and kernel-based models
|
||||
|
||||
**Usage**:
|
||||
```python
|
||||
from src.autopilot.explainability import get_model_explainer
|
||||
|
||||
explainer = get_model_explainer(model)
|
||||
|
||||
# Initialize with background data
|
||||
explainer.initialize_explainer(background_data_df)
|
||||
|
||||
# Explain a prediction
|
||||
explanation = explainer.explain_prediction(features)
|
||||
# Returns: feature_importance, top_positive_features, top_negative_features, etc.
|
||||
|
||||
# Get global feature importance
|
||||
global_importance = explainer.get_global_feature_importance()
|
||||
```
|
||||
|
||||
### 4. Advanced Regime Detection
|
||||
|
||||
**Location**: `src/autopilot/regime_detection.py`
|
||||
|
||||
**Features**:
|
||||
- Hidden Markov Models (HMM) for regime detection
|
||||
- Gaussian Mixture Models (GMM) for regime detection
|
||||
- Hybrid detection combining multiple methods
|
||||
- Probabilistic regime predictions
|
||||
|
||||
**Methods**:
|
||||
- `HMM`: Models regime transitions as Markov process
|
||||
- `GMM`: Clusters market states using Gaussian mixtures
|
||||
- `Hybrid`: Combines both methods for robust detection
|
||||
|
||||
**Usage**:
|
||||
```python
|
||||
from src.autopilot.regime_detection import AdvancedRegimeDetector
|
||||
|
||||
detector = AdvancedRegimeDetector(method="hmm")
|
||||
detector.fit_from_dataframe(ohlcv_df)
|
||||
|
||||
regime = detector.detect_regime(returns=0.01, volatility=0.02)
|
||||
```
|
||||
|
||||
### 5. Enhanced Feature Engineering
|
||||
|
||||
**Location**: `src/autopilot/feature_engineering.py`
|
||||
|
||||
**Enhancements**:
|
||||
- Multi-timeframe feature aggregation
|
||||
- Order book feature extraction
|
||||
- Feature interactions (products, ratios)
|
||||
- Regime-specific feature engineering
|
||||
- Lag features for temporal patterns
|
||||
|
||||
## Integration
|
||||
|
||||
These components integrate with the existing `IntelligentAutopilot` and `StrategySelector` classes:
|
||||
|
||||
1. **Online Learning**: Integrated via `_record_trade_for_learning` method
|
||||
2. **Confidence Calibration**: Applied in `select_best_strategy` method
|
||||
3. **Explainability**: Available via API endpoints for UI visualization
|
||||
4. **Regime Detection**: Used in `MarketAnalyzer` for enhanced regime classification
|
||||
|
||||
## Configuration
|
||||
|
||||
Configuration options in `config/config.yaml`:
|
||||
|
||||
```yaml
|
||||
autopilot:
|
||||
intelligent:
|
||||
online_learning:
|
||||
drift_window: 100
|
||||
drift_threshold: 0.1
|
||||
buffer_size: 50
|
||||
update_frequency: 100
|
||||
confidence_calibration:
|
||||
method: "isotonic" # or "platt"
|
||||
regime_detection:
|
||||
method: "hmm" # or "gmm" or "hybrid"
|
||||
n_regimes: 4
|
||||
```
|
||||
|
||||
## Dependencies
|
||||
|
||||
Optional dependencies (with fallbacks):
|
||||
- `hmmlearn`: For HMM regime detection
|
||||
- `shap`: For model explainability
|
||||
- `scipy`: For calibration methods (isotonic regression)
|
||||
|
||||
## Performance Considerations
|
||||
|
||||
- **Online Learning**: Batches updates for efficiency (configurable buffer size)
|
||||
- **SHAP Values**: Can be slow for large models; consider caching or background computation
|
||||
- **HMM/GMM**: Training is fast, prediction is very fast
|
||||
- **Calibration**: Fitting is fast, prediction is O(1)
|
||||
|
||||
## Testing
|
||||
|
||||
Recommended testing approach:
|
||||
1. Use synthetic data for online learning pipeline
|
||||
2. Test calibration with known probability distributions
|
||||
3. Validate SHAP values against known feature importance
|
||||
4. Compare HMM/GMM regimes against rule-based classification
|
||||
Reference in New Issue
Block a user