281 lines
10 KiB
Python
281 lines
10 KiB
Python
"""Market Data API endpoints."""
|
|
|
|
from typing import List, Optional, Dict, Any
|
|
from datetime import datetime, timedelta
|
|
from fastapi import APIRouter, HTTPException, Query, Body
|
|
from pydantic import BaseModel
|
|
import pandas as pd
|
|
|
|
from src.core.database import MarketData, get_database
|
|
from src.data.pricing_service import get_pricing_service
|
|
from src.core.config import get_config
|
|
|
|
router = APIRouter()
|
|
|
|
|
|
@router.get("/ohlcv/{symbol:path}")
|
|
async def get_ohlcv(
|
|
symbol: str,
|
|
timeframe: str = "1h",
|
|
limit: int = 100,
|
|
exchange: str = "coinbase" # Default exchange
|
|
):
|
|
"""Get OHLCV data for a symbol."""
|
|
from sqlalchemy import select
|
|
try:
|
|
# Try database first
|
|
try:
|
|
db = get_database()
|
|
async with db.get_session() as session:
|
|
# Use select() for async compatibility
|
|
stmt = select(MarketData).filter_by(
|
|
symbol=symbol,
|
|
timeframe=timeframe,
|
|
exchange=exchange
|
|
).order_by(MarketData.timestamp.desc()).limit(limit)
|
|
|
|
result = await session.execute(stmt)
|
|
data = result.scalars().all()
|
|
|
|
if data:
|
|
return [
|
|
{
|
|
"time": int(d.timestamp.timestamp()),
|
|
"open": float(d.open),
|
|
"high": float(d.high),
|
|
"low": float(d.low),
|
|
"close": float(d.close),
|
|
"volume": float(d.volume)
|
|
}
|
|
for d in reversed(data)
|
|
]
|
|
except Exception as db_error:
|
|
import sys
|
|
print(f"Database query failed, falling back to live data: {db_error}", file=sys.stderr)
|
|
|
|
# If no data in DB or DB error, fetch live from pricing service
|
|
try:
|
|
pricing_service = get_pricing_service()
|
|
# pricing_service.get_ohlcv is currently sync in its implementation but we call it from our async handler
|
|
ohlcv_data = pricing_service.get_ohlcv(
|
|
symbol=symbol,
|
|
timeframe=timeframe,
|
|
limit=limit
|
|
)
|
|
|
|
if ohlcv_data:
|
|
# Convert to frontend format: [timestamp, open, high, low, close, volume] -> {time, open, high, low, close, volume}
|
|
return [
|
|
{
|
|
"time": int(candle[0] / 1000), # Convert ms to seconds
|
|
"open": float(candle[1]),
|
|
"high": float(candle[2]),
|
|
"low": float(candle[3]),
|
|
"close": float(candle[4]),
|
|
"volume": float(candle[5])
|
|
}
|
|
for candle in ohlcv_data
|
|
]
|
|
except Exception as fetch_error:
|
|
import sys
|
|
print(f"Failed to fetch live data: {fetch_error}", file=sys.stderr)
|
|
|
|
# If all else fails, return empty list
|
|
return []
|
|
except Exception as e:
|
|
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
|
|
@router.get("/ticker/{symbol:path}")
|
|
async def get_ticker(symbol: str):
|
|
"""Get current ticker data for a symbol.
|
|
|
|
Returns ticker data with provider information.
|
|
"""
|
|
try:
|
|
pricing_service = get_pricing_service()
|
|
ticker_data = pricing_service.get_ticker(symbol)
|
|
|
|
if not ticker_data:
|
|
raise HTTPException(status_code=404, detail=f"Ticker data not available for {symbol}")
|
|
|
|
active_provider = pricing_service.get_active_provider()
|
|
|
|
return {
|
|
"symbol": symbol,
|
|
"bid": float(ticker_data.get('bid', 0)),
|
|
"ask": float(ticker_data.get('ask', 0)),
|
|
"last": float(ticker_data.get('last', 0)),
|
|
"high": float(ticker_data.get('high', 0)),
|
|
"low": float(ticker_data.get('low', 0)),
|
|
"volume": float(ticker_data.get('volume', 0)),
|
|
"timestamp": ticker_data.get('timestamp'),
|
|
"provider": active_provider,
|
|
}
|
|
except HTTPException:
|
|
raise
|
|
except Exception as e:
|
|
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
|
|
@router.get("/providers/health")
|
|
async def get_provider_health(provider: Optional[str] = Query(None, description="Specific provider name")):
|
|
"""Get health status for pricing providers.
|
|
|
|
Args:
|
|
provider: Optional provider name to get health for specific provider
|
|
"""
|
|
try:
|
|
pricing_service = get_pricing_service()
|
|
health_data = pricing_service.get_provider_health(provider)
|
|
|
|
return {
|
|
"active_provider": pricing_service.get_active_provider(),
|
|
"health": health_data,
|
|
}
|
|
except Exception as e:
|
|
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
|
|
@router.get("/providers/status")
|
|
async def get_provider_status():
|
|
"""Get detailed status for all pricing providers."""
|
|
try:
|
|
pricing_service = get_pricing_service()
|
|
health_data = pricing_service.get_provider_health()
|
|
cache_stats = pricing_service.get_cache_stats()
|
|
|
|
return {
|
|
"active_provider": pricing_service.get_active_provider(),
|
|
"providers": health_data,
|
|
"cache": cache_stats,
|
|
}
|
|
except Exception as e:
|
|
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
|
|
@router.get("/providers/config")
|
|
async def get_provider_config():
|
|
"""Get provider configuration."""
|
|
try:
|
|
config = get_config()
|
|
provider_config = config.get("data_providers", {})
|
|
return provider_config
|
|
except Exception as e:
|
|
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
|
|
class ProviderConfigUpdate(BaseModel):
|
|
"""Provider configuration update model."""
|
|
primary: Optional[List[Dict[str, Any]]] = None
|
|
fallback: Optional[Dict[str, Any]] = None
|
|
caching: Optional[Dict[str, Any]] = None
|
|
websocket: Optional[Dict[str, Any]] = None
|
|
|
|
|
|
@router.put("/providers/config")
|
|
async def update_provider_config(config_update: ProviderConfigUpdate = Body(...)):
|
|
"""Update provider configuration."""
|
|
try:
|
|
config = get_config()
|
|
current_config = config.get("data_providers", {})
|
|
|
|
# Update configuration
|
|
if config_update.primary is not None:
|
|
current_config["primary"] = config_update.primary
|
|
if config_update.fallback is not None:
|
|
current_config["fallback"] = {**current_config.get("fallback", {}), **config_update.fallback}
|
|
if config_update.caching is not None:
|
|
current_config["caching"] = {**current_config.get("caching", {}), **config_update.caching}
|
|
if config_update.websocket is not None:
|
|
current_config["websocket"] = {**current_config.get("websocket", {}), **config_update.websocket}
|
|
|
|
# Save configuration
|
|
config.set("data_providers", current_config)
|
|
config.save()
|
|
|
|
return {"message": "Configuration updated successfully", "config": current_config}
|
|
except Exception as e:
|
|
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
|
|
@router.get("/spread")
|
|
async def get_spread_data(
|
|
primary_symbol: str = Query(..., description="Primary symbol (e.g., SOL/USD)"),
|
|
secondary_symbol: str = Query(..., description="Secondary symbol (e.g., AVAX/USD)"),
|
|
timeframe: str = Query("1h", description="Timeframe"),
|
|
lookback: int = Query(50, description="Number of candles to fetch"),
|
|
):
|
|
"""Get spread and Z-Score data for pairs trading visualization.
|
|
|
|
Returns spread ratio and Z-Score time series for the given symbol pair.
|
|
"""
|
|
try:
|
|
pricing_service = get_pricing_service()
|
|
|
|
# Fetch OHLCV for both symbols
|
|
ohlcv_a = pricing_service.get_ohlcv(
|
|
symbol=primary_symbol,
|
|
timeframe=timeframe,
|
|
limit=lookback
|
|
)
|
|
|
|
ohlcv_b = pricing_service.get_ohlcv(
|
|
symbol=secondary_symbol,
|
|
timeframe=timeframe,
|
|
limit=lookback
|
|
)
|
|
|
|
if not ohlcv_a or not ohlcv_b:
|
|
raise HTTPException(status_code=404, detail="Could not fetch data for one or both symbols")
|
|
|
|
# Convert to DataFrames
|
|
df_a = pd.DataFrame(ohlcv_a, columns=['timestamp', 'open', 'high', 'low', 'close', 'volume'])
|
|
df_b = pd.DataFrame(ohlcv_b, columns=['timestamp', 'open', 'high', 'low', 'close', 'volume'])
|
|
|
|
# Align by length
|
|
min_len = min(len(df_a), len(df_b))
|
|
df_a = df_a.tail(min_len).reset_index(drop=True)
|
|
df_b = df_b.tail(min_len).reset_index(drop=True)
|
|
|
|
# Calculate spread (ratio)
|
|
closes_a = df_a['close'].astype(float)
|
|
closes_b = df_b['close'].astype(float)
|
|
spread = closes_a / closes_b
|
|
|
|
# Calculate Z-Score with rolling window
|
|
lookback_window = min(20, min_len - 1)
|
|
rolling_mean = spread.rolling(window=lookback_window).mean()
|
|
rolling_std = spread.rolling(window=lookback_window).std()
|
|
z_score = (spread - rolling_mean) / rolling_std
|
|
|
|
# Build response
|
|
result = []
|
|
for i in range(min_len):
|
|
result.append({
|
|
"timestamp": int(df_a['timestamp'].iloc[i]),
|
|
"spread": float(spread.iloc[i]) if not pd.isna(spread.iloc[i]) else None,
|
|
"zScore": float(z_score.iloc[i]) if not pd.isna(z_score.iloc[i]) else None,
|
|
"priceA": float(closes_a.iloc[i]),
|
|
"priceB": float(closes_b.iloc[i]),
|
|
})
|
|
|
|
# Filter out entries with null Z-Score (during warmup period)
|
|
result = [r for r in result if r["zScore"] is not None]
|
|
|
|
return {
|
|
"primarySymbol": primary_symbol,
|
|
"secondarySymbol": secondary_symbol,
|
|
"timeframe": timeframe,
|
|
"lookbackWindow": lookback_window,
|
|
"data": result,
|
|
"currentSpread": result[-1]["spread"] if result else None,
|
|
"currentZScore": result[-1]["zScore"] if result else None,
|
|
}
|
|
|
|
except HTTPException:
|
|
raise
|
|
except Exception as e:
|
|
raise HTTPException(status_code=500, detail=str(e))
|
|
|